Stabilized Finite Element Methods for Nonsymmetric, Noncoercive, and Ill-Posed Problems. Part II: Hyperbolic Equations

نویسنده

  • Erik Burman
چکیده

In this paper we consider stabilized finite element methods for hyperbolic transport equations without coercivity. Abstract conditions for the convergence of the methods are introduced and these conditions are shown to hold for three different stabilized methods: the Galerkin least squares method, the continuous interior penalty method, and the discontinuous Galerkin method. We consider both the standard stabilization methods and the optimization-based method introduced The main idea of the latter is to write the stabilized method in an optimization framework and select the discrete function for which a certain cost functional, in our case the stabilization term, is minimized. Some numerical examples illustrate the theoretical investigations. 1. Introduction. Several finite element methods have been proposed for the computation of hyperbolic problems, such as the SUPG method [5, 16], the discon-tinuous Galerkin (DG) method [19, 18, 17], and several different weakly consistent, symmetric stabilization methods for continuous approximation spaces [14, 11, 9, 3]. In most of these cases, however, the analysis relies on the satisfaction of a coercivity condition. Indeed if a scalar hyperbolic transport equation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Ill–Posedness and Source Conditions of Operator Equations in Hilbert Spaces

The characterization of the local ill–posedness and the local degree of nonlinearity are of particular importance for the stable solution of nonlinear ill–posed problems. We present assertions concerning the interdependence between the illposedness of the nonlinear problem and its linearization. Moreover, we show that the concept of the degree of nonlinearity combined with source conditions can...

متن کامل

Krylov subspace iterative methods for nonsymmetric discrete ill-posed problems in image restoration

The BiCG and QMR methods are well-known Krylov subspace iterative methods for the solution of linear systems of equations with a large nonsymmetric, nonsingular matrix. However, little is known of the performance of these methods when they are applied to the computation of approximate solutions of linear systems of equations with a matrix of ill-determined rank. Such linear systems are known as...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

Error estimates for stabilized finite element methods applied to ill-posed problems

We propose an analysis for the stabilized finite element methods proposed in [2] valid in the case of ill-posed problems for which only weak continuous dependence can be assumed. A priori and a posteriori error estimates are obtained without assuming coercivity or inf-sup stability of the continuous problem. Résumé Estimations d’erreurs pour des méthodes d’éléments finis stabilisées appliquées ...

متن کامل

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014